
 -1- 

 

Machine Learning in Momentum Strategies 

 
Hsuan-Ling Chang, Hung-Wen Cheng, Yi-Min Lan*, Jou-Ping Yu 

 
Abstract 

The study applies machine learning models to construct momentum strategies and 
utilizes the information coefficient as an indicator to select stocks with strong and weak 
momentum characteristics. Through this approach, we have built investment portfolios 
capable of generating superior returns and conduct a thorough analysis. Compared to 
existing research on momentum strategies, we incorporate machine learning to capture 
non-linear interactions. This approach improves the traditional stock selection process, 
which is frequently hindered by challenges related to timeliness, accuracy, and 
efficiency due to market risk factors. We find that implementing bidirectional 
momentum strategies outperforms unidirectional ones, and momentum factors with 
longer observation periods exhibit stronger correlations with returns. Optimizing the 
number of stocks in the portfolio, while staying within a certain threshold, leads to the 
highest excess returns. We present a novel framework for momentum strategies that 
enhances and improves the operational aspects of asset management. By introducing 
innovative financial technology applications to traditional investment strategies, we 
demonstrate significant effectiveness. 
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1 Introduction 
The efficient market hypothesis has been a fundamental concept in finance. It states that 
stock prices fully reflect all available information and that consistently outperforming 
the market is impossible. However, in recent decades, a growing body of research has 
challenged this traditional theory. One notable contribution to this paradigm shift is the 
groundbreaking work of Chan et al. (1996) in their seminal paper titled "Momentum 
Strategies." In their research, the authors explored a novel investment strategy based on 
momentum. This strategy involves buying stocks with strong historical performance 
(past winners) and selling stocks with weak historical performance (past losers). 
Surprisingly, their findings revealed that this momentum strategy could generate 
abnormal returns, suggesting that stock market efficiency may not be as robust as 
previously believed. The implications of their discovery are significant, as it challenges 
the prevailing notion of market efficiency and suggests that active trading strategies, 
such as momentum, could potentially outperform traditional passive investment 
approaches. Their research sheds new light on understanding market behavior and 
raises essential questions about the underlying factors that drive stock prices. Moreover, 
the paper goes beyond merely identifying profitable trading strategies. It also provides 
valuable insights into market efficiency by highlighting the presence of price reversals 
and performance disparities among various types of stocks. Building upon the 
momentum concept, subsequent research by Fama and French (1992) emphasizes the 
cross-section of expected stock returns. Their work provides complementary insights 
into the momentum phenomenon, considering it as a special case of size and value 
strategies. The relationship between momentum and other well-known factors enhances 
our comprehension of asset pricing and market anomalies. Another influential study by 
Shleifer and Vishny (1997) explores the "limits of arbitrage," uncovering the effects of 
constraints on arbitrage opportunities that can impact momentum strategies. This 
highlights the importance of considering market dynamics and transaction costs when 
designing investment strategies. 

As the literature on momentum strategies continued to evolve, Barroso and Santa-
Clara (2015) introduced a risk-managed version of the momentum strategy. This 
version incorporates risk management techniques to enhance returns while reducing 
volatility and risk. Their innovative approach showcases the potential benefits of 
dynamic momentum strategies and provides investors with a new tool to navigate 
market complexities. Similarly, Daniel and Moskowitz (2016) examined momentum 
crashes, providing insights into the reversal of momentum profits over time. Their 
findings challenge traditional risk-based explanations of momentum, suggesting that 
other factors, such as behavioral patterns or market inefficiencies, may contribute to the 
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profitability of momentum investing. Constructing momentum strategies is not only 
theoretically well-supported but also practically feasible. The extensive body of 
research discussed in the previous sections has consistently shown that momentum 
strategies have the potential to generate abnormal returns in the stock market. However, 
there have been challenges in implementing and refining these strategies in real-world 
settings. One of the key challenges in constructing a traditional momentum strategy is 
the requirement for precise and timely stock selection. Identifying past winners and 
losers, as well as determining the optimal holding period and rebalancing frequency, 
can be a complex task. Additionally, maintaining a dynamic and adaptive approach to 
changing market conditions poses a significant challenge. 

Machine learning offers an innovative solution to these challenges. By leveraging 
vast amounts of historical market data and employing sophisticated algorithms, 
machine learning can effectively identify stocks with strong momentum characteristics 
and optimize trading parameters. This technology can not only enhance the accuracy of 
stock selection but also automate the entire process, enabling quicker and more efficient 
decision-making. Furthermore, machine learning algorithms have the ability to identify 
and exploit patterns and signals that human analysts may overlook. This can lead to a 
deeper understanding of market dynamics and the discovery of additional factors that 
may contribute to momentum profits, as demonstrated in the research conducted by 
Barroso and Santa-Clara (2015). Machine learning can uncover new insights and 
potentially enhance the performance of momentum strategies. Additionally, the ability 
of machine learning models to adapt to changing market conditions can help address 
the issue of momentum profit reversals highlighted by Griffin et al. (2003). These 
models can continuously analyze market data and adjust trading strategies in response 
to evolving market trends. This capability potentially helps to mitigate the impact of 
reversals and enhance the resilience of momentum strategies. The feasibility of 
constructing momentum strategies is further enhanced by the application of machine 
learning techniques. By harnessing the power of data analysis and automation, machine 
learning can overcome past challenges in stock selection, optimize trading parameters, 
and adjust to evolving market conditions. 

In modern finance and machine learning domains, the Information Coefficient (IC) 
is widely used to measure the correlation between forecasted outcomes and actual 
results. This metric, originally introduced by Goodwin (1998) in the context of financial 
analysis, has become an essential tool for assessing the accuracy and skill of various 
predictions. The IC serves as an indicator of how well a manager's forecasts align with 
the actual returns observed in financial markets. When the IC is high, it signifies that 
the manager's predictions are more accurate and capable of identifying mispricing in 
the market. On the other hand, a low IC suggests that the forecasts do not significantly 
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contribute to generating value. The utility of the IC extends beyond finance and 
investment management. Researchers, such as Kinney and Atwal (2014), have applied 
it in various statistical analyses, including the analysis of financial data to identify co-
moving stocks, as well as in machine learning applications for feature selection and 
clustering. Its versatility lies in its ability to capture complex relationships between 
variables, making it sensitive to both linear and non-linear dependencies. This 
sensitivity helps improve the performance and accuracy of prediction algorithms. 

In this paper, we build upon the research conducted by Gu et al. (2020), who 
integrated various machine learning techniques with contemporary empirical asset 
pricing research to analyze the fluctuations of market risk premia for stock returns. 
Their findings indicated that machine learning improves the description of expected 
returns. When applied to portfolio construction, it leads to significant performance 
improvements, especially with more advanced models that consider non-linear 
predictor interactions that simpler methods overlook. Given these characteristics, 
machine learning is particularly appealing for investors engaged in short-term 
speculative behavior, making it well-suited for constructing momentum and reversal 
strategies. We first verify the ability of momentum and reversal strategies, constructed 
using the Information Coefficient (IC), to generate significant excess returns. To 
achieve this, we are motivated to accurately predict the next month's IC by the end of 
the previous month. This will enable us to obtain a list of investment portfolios that can 
generate superior returns. Next, we train models using momentum factors and IC to 
explore the predictive capabilities of different machine learning models when combined 
with IC attributes. This is done to evaluate the effectiveness of momentum and reversal 
strategies. 

The evaluation approach, based on the confusion matrix (Hernández-Orallo et al., 
2012), is unconventional for a non-classification model. However, the objective here is 
not to directly apply the results of a regression model, but rather to evaluate the 
consistency in direction between the actual and predicted returns, considering whether 
they are positive or negative. By utilizing the confusion matrix, we aim to analyze the 
performance of the model in terms of accurately predicting positive and negative 
outcomes. The matrix allows for the calculation of key performance metrics, such as 
true positives (correctly predicted positive returns), false positives (incorrectly 
predicted positive returns), true negatives (correctly predicted negative returns), and 
false negatives (incorrectly predicted negative returns). This enables us to calculate four 
performance metrics that assess the accuracy of predicting positive or negative actual 
and projected returns. While the model used in this research may not adhere to the 
conventional classification framework, the utilization of the confusion matrix enables 
the assessment of the model's accuracy in predicting positive and negative returns. This 
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approach enables a unique evaluation of the model's performance that aligns with the 
specific research objectives. Our results demonstrate that the applied machine learning 
models achieve excellent out-of-sample performance. 

Observations from our empirical analysis include the following: While momentum 
and reversal strategies constructed using real IC show the ability to generate absolute 
returns, those built using machine learning models are only successful for momentum 
strategies, in line with the findings of Gu et al. (2020). Additionally, we observe that 
portfolios formed by shorting the weakest momentum stocks outperform those formed 
by longing the strongest momentum stocks. This provides clear evidence of the 
"winners' loser" effect, which suggests that price reversal does not occur over the one-
month holding period. Furthermore, we find that as the number of companies with long 
or short positions decreases, the returns increase significantly. However, once the 
number of stocks falls below a certain threshold, the returns start to decline. Lastly, we 
compare momentum factors with different formation periods. Our findings reveal that 
longer formation periods are associated with higher adoption rates. This suggests that 
momentum factors with longer formation periods exhibit stronger correlations with 
future returns. This contrasts with the findings of Gu et al. (2020), as we observe a 
higher importance for momentum factors with shorter formation periods. Previous 
research has demonstrated that momentum strategies can achieve excess returns. 
However, these strategies are often influenced by economic conditions, and their 
effectiveness tends to diminish during economic recessions. Additionally, precise and 
timely stock selection remains a significant challenge. Our results show that 
constructing momentum strategies based on machine learning predictions of IC values 
yields significant and economically meaningful performance, even during periods of 
market turbulence such as the 2015 stock market crash and the post-2020 COVID-19 
pandemic era. While this approach confirms that IC can serve as an evaluation metric 
for constructing portfolios with excess returns, it is essential to consider the impact of 
transaction costs and other market factors. 

The rest of the paper is structured as follows. In Section 2, we introduce the 
variables utilized in this study, offering a comprehensive overview of their importance 
and relevance to our research objectives. In Section 3, we elaborate on the research 
design adopted and the methodology employed to construct investment portfolios. 
Additionally, Section 4 offers an explanation of the basic operating principles of the 
various machine learning models utilized in our analysis. We present our empirical 
analysis in Section 5. We evaluate the out-of-sample predictability of the constructed 
models and extensively discuss the relative importance of various predictors. We 
observe and compare the real-world outcomes with the predictions generated by the 
machine learning models. Our goal is to derive meaningful insights into the 
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effectiveness of momentum and reversal strategies in the context of market risk premia 
dynamics. We conclude in Section 6. 

 

2 Variables 
2.1 Logarithmic Return 
The rate of return utilized in this paper is the logarithmic return, rather than the simple 
return. Logarithmic return possesses an additive nature, remaining unaffected by the 
base period and time; thus, the rate of increase or decrease remains constant. This 
concept can be expressed as follows: 
 

𝑅!"# = ln %$!"#
$!
&,       (1) 

 

where 𝑅!"# is the return for a holding period of ℎ months, 𝑆!"# is the closing price 
of the stock at time 𝑡 + ℎ, and 𝑆! is the closing price of the stock at time 𝑡. In this paper, 
ℎ is set to 1, indicating a holding period of 1 month. 

 
2.2 Momentum 
The momentum employed is referred to as return momentum, which utilizes a 
formation period of m months. The concept involves dividing the current closing price 
by the closing price m months ago and taking the logarithm of the resulting quotient. 
This calculation method remains unaffected by the base period and time. 
 

𝑀!,& = ln % $!
$!$%

&.       (2) 

 
where the momentum factors calculate using five different time intervals: m = 1, 6, 12, 
36, and 60 months. 
 

 
2.3 Information Coefficient (IC) 
The Information Coefficient is a measure used to assess the predictive ability of 
investment strategies or models. It calculates the correlation between observed data and 



 -7- 

actual returns, where the data can represent different characteristics or macroeconomic 
variables. The IC values were computed using momentum factors and logarithmic 
returns as predictive indicators. Pearson Correlation is used as a statistical method to 
calculate the IC values, which measures the degree of linear correlation between these 
two sets of data. The IC value is calculated as the covariance of the two variables 
divided by the product of their respective standard deviations. In this context, X 
represents the momentum data, and Y represents the returns. It can be expressed as 
follows: 
 

𝐼𝐶 = 𝜌',( =
)*+(',()
.&.'

= /[('12&)((12')]
.&.'

.     (3) 

 
The correlation between the target factor and the return can be determined through 

the Information Coefficient (IC). The IC value ranges from 1 to -1. When the IC value 
is greater than 0, it indicates a positive relationship between the current factor and return. 
Conversely, when the IC value is less than 0, it indicates a negative relationship between 
the current factor and the return. The larger the absolute value of the IC, the greater the 
influence of the factor on the return of investment. There are two common types of IC 
values: 
1 Normal IC：The correlation coefficient in the cross section between the target 

factor and the return of holding for h months at time t. 
 

𝑁𝑜𝑟𝑚𝑎𝑙	𝐼𝐶! = 𝑐𝑜𝑟𝑟8𝑀!,&, 𝑅!"#:.     (4) 
 

2 Rank IC：The correlation coefficient in the cross section between the ranking of 

the target factor and the ranking of the return of holding for h months at time t. 
 

𝑅𝑎𝑛𝑘	𝐼𝐶! = 𝑐𝑜𝑟𝑟8𝑟(𝑀!,&), 𝑟(𝑅!"#):.     (5) 
 

where 𝑟(𝑀!,&) and 𝑟(𝑅!"#) indicate that the momentum data and logarithmic return 
have been ranked before calculating the related coefficients. We use Rank IC because 
Normal IC requires data to follow a normal distribution, which is often not the case 
with financial data. 
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3 Research Design 
3.1 Research Steps 
We can be broadly divided into two main parts. The first part focuses on calculating the 
actual Information Coefficient (IC) as a screening indicator for investment. Initially, the 
emphasis is on the real IC values rather than incorporating predictions. Stocks with 
strong and weak performance of momentum are selected based on the actual IC values, 
and different investment portfolios are constructed accordingly. The objective is to 
examine whether these portfolios, utilizing the actual IC values, can generate excess 
returns. This part aims to evaluate whether the IC values calculated using momentum 
can truly imply excess returns and serve as indicators for distinguishing between strong 
and weak momentum of stocks. The research steps for the first part, which focuses on 
actual IC values, are illustrated in Figure 1. 

 
Figure 1: Steps of Actual IC Values 

 
 
Based on the initial conclusions drawn from the first part, it provides motivation for the 
second part of the paper. If the investment portfolios using the actual IC values can 
effectively deliver robust excess returns, we employ machine learning models to predict 
IC values and obtain a list of companies for the portfolios in advance. This approach 
aims to achieve similar robust excess returns. The research steps for the second part, 
involving the application of machine learning, are illustrated in Figure 2. 
 

Figure 2: Steps of Predicted IC Values 
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3.2 Grouping Shares 
After obtaining the predicted IC values for the five different time intervals using 
machine learning, the absolute values of these predictions are compared, and the 
maximum absolute value is selected as the final predicted IC value. Stocks with prices 
below 1 are then removed from consideration. The remaining stocks are sorted based 
on their momentum strength within this time interval. They are divided into groups of 
10, 50, 100, 200, 500, 1000, and 5000, with each group containing 500, 100, 50, 25, 10, 
5, and 1 stock, respectively. The group with the strongest momentum is labeled as “Top”, 
while the group with the weakest momentum is labeled as “Bottom”. 
 
3.3 Investment Portfolio 

Two different observation methods are utilized to construct investment portfolios, 
both employing equal weighting to determine the stock proportions within the 
portfolios. The first method involves observing the original values of the selected 
predicted IC values before taking the absolute value. It distinguishes between positive 
and negative values and conducts different operations accordingly. A positive IC value 
indicates a positive relationship between the momentum factor and future returns, 
leading to a momentum strategy. Conversely, a negative IC value indicates a negative 
relationship, resulting in a reverse momentum strategy. This leads to four construction 
methods: 

1. TB/BT：Buy Top and Sell Bottom when the IC value is positive; Buy Bottom 
and Sell Top when the IC value is negative. The return is calculated as the 
difference in returns between the two groups of stocks. 

2. buyT/buyB：Buy Top when the IC value is positive; Buy Bottom when the IC 
value is negative. 

3. buyT/sellB：Buy Top when the IC value is positive; Sell Bottom when the IC 
value is negative. 

4. sellB/sellT：Sell Bottom when the IC value is positive; Sell Top when the IC 
value is negative. 

The second method disregards whether the obtained predicted IC value is positive 
or negative and applies the same operation in all cases. This results in five construction 
methods: 

1. buyT：Buy Top. 
2. buyB：Buy Bottom. 
3. sellT：Sell Top. 
4. sellB：Sell Bottom. 
5. buyTsellB：Buy Top and Sell Bottom simultaneously. The return is calculated 

as the difference in returns between the two groups of stocks. 
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In total, there are nine different investment portfolio construction methods using 
these two approaches. 

4 Methodology 
We describe the relationship between the predicted IC values and the corresponding 
predictor variables as an additive prediction error model. It can be represented by the 
following equation： 
 

𝐼𝐶&,4"5,!"5 = 𝐸!8𝐼𝐶&,4"5,!"5: + 𝜀&,4"5,!"5.       (6) 
 

where: 
 

                      𝐸!8𝐼𝐶&,4"5,!"5: = 𝑔8𝓏&,4,!:.                     (7) 
 

The IC values are calculated at time 𝑡 = 2,… , 𝑇, while the momentum factors are 
calculated at time 𝑖 = 𝑡 − 1 = 1,… , 𝐼. The observation period for the momentum factor 
is as m = 1, 6, 12, 36, 60 respectively. ε represents the random error. It is assumed that 
all stock data is complete, and the issue of missing values is discussed in section5.1. 

Our objective is to isolate a representation of 𝐸!8𝐼𝐶&,4"5,!"5: as a function of 
predictor variables that maximizes the out-of-sample explanatory power for realized 
𝐼𝐶&,4,"5!"5. The aim is to improve the accuracy of predicting IC values by appropriately 
modeling 𝐸!8𝐼𝐶&,4"5,!"5:, ensuring that this predictive ability is maximized not only 
within the sample (observed data) but also out-of-sample (unobserved data). Therefore, 
the functional form of 𝑔(∙)is left unspecified. Our target is to search for the prediction 
model from a set of candidates that gives the best prediction performance. The vector 
of predictors, 𝓏&,4,!	, consists of the momentum of all stocks at time point t-1 and the 
IC value at time t. The predictor variables 𝓏&,4,! include the momentum of all stocks 
sorted at time point t-1 and the IC value at time t. It can be represented as: 

 

𝓏&,4,! = %6(7!$(,%)8)!
&.      (8) 

 
where 𝑟(𝑀!15,&) is a 4983×1 vector of the momentum factors at time t-1, 𝐼𝐶! is a 

1×1 vector of the IC value at time t-1. Each result is independent of the other. Also, 𝑔(∙
) depends on 𝓏 only through 𝓏&,4,!. This means our prediction does not use information 
from the history prior to t and the momentum factors prior to t-1. In total, we consider 
7 machine learning methods, namely linear regression, random forest, and neural 
networks (NN1-NN5). 
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4.1 Simple Linear Regression Model  
We begin with the simple linear regression model estimated via ordinary least squares 
(OLS). The simple linear model imposes those conditional expectations 𝑔(∙) can be 
approximated by a linear function of the raw predictor variables and the parameter 
vector, θ, 
 

𝑔8𝓏&,4,!; 𝜃: = 𝓏&,4,!9 𝜃.      (9) 
 

This model imposes a simple regression specification and does not allow for nonlinear 
effects or interactions between predictors. The model combines the original predictor 
variables and the parameter vector by linearly. As a result, the predicted values of the 
model are weighted linear combinations of the original predictor variables, with the 
weights determined by the parameter vector θ. 

Our baseline estimation of the simple linear model uses a standard least square, or 
“ℓ:”, objective function: 

 

ℒ(𝜃) = 5
8;
∑ ∑ (;

!<:
8
4<5 𝐼𝐶&,4"5,!"5 − 	𝑔8𝓏&,4,!:):.   (10) 

 
Minimizing 𝓛(𝜃) yields the pooled OLS estimator. The convenience of the baseline l2 
objective function is that it offers analytical estimates and thus avoids sophisticated 
optimization and computation. 
 
4.2 Random Forest 
Simple linear regression captures individual predictors’ nonlinear impact on expected 
returns but does not account for interactions among predictors. One way to add 
interactions is to expand the generalized model to include multivariate functions of 
predictors. However, without a priori assumptions for which interactions to include, the 
generalized linear model becomes computationally infeasible. 

Random Forests offer an alternative approach to address this issue. Before 
discussing Random Forests, it is important to understand Regression Trees. regression 
trees have become a popular machine learning approach for incorporating multi-way 
predictor interactions. Unlike linear models, trees are fully nonparametric and possess 
a logic that departs markedly from traditional regressions. At a basic level, a tree aims 
to identify groups of samples with similar behaviors. A tree “grows” in a sequence of 
steps. At each step, a new “branch” sorts the data leftover from the preceding step into 
bins based on one of the predictor variables. This sequential branching slices the space 
of predictors into rectangular partitions and approximates the unknown function 𝑔(∙) 
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with the average value of the outcome variable within each partition.Figure 3 shows an 
example with two predictors, “IC” and “mom.” The left panel describes how the tree 
assigns each observation to a partition based on its predictor values. First, observations 
are sorted on the IC value. Those above the breakpoint of 0 are assigned to Category 3. 
Those with negative IC value are then further sorted by mom. Observations with 
negative IC value and mom below 0 are assigned to Category 1, while those with mom 
above 0 go into Category 2. Finally, forecasts for observations in each partition are 
defined as the simple average of the outcome variable’s value among observations in 
that partition. 
 

Figure 3: Regression Tree Example 

 
More formally, the prediction of a tree, 𝑇 , with 𝐾 “leaves” (terminal nodes), and 

depth 𝐿, can be written as: 
 

𝑔8𝓏&,4,!; 𝜃, 𝐾, 𝐿: = ∑ 𝜃=1>𝓏%,*,!@)+(A)B
C
=<5 ,   (11) 

 
where 𝐶=(𝐿) is one of the 𝐾 partitions of the data. Each partition is a product of up to 
𝐿 indicator functions of the predictors. The constant associated with partition k (denoted 
𝜃= ) is defined to be the sample average of outcomes within the partition.16 In the 
example of Figure 1, the prediction equation is: 
𝑔"𝓏!,#,$; 𝜃, 3,2) = 𝜃%1&'(!,#,$)*+1&!,!!,#)*+ + 𝜃-1&'(!,#,$)*+1&!,!!,#.*+ + 𝜃/1&'(!,#,$.*+, 

Random Forest is a model that consists of multiple regression trees created using 
bootstrapping, with the goal of reducing the correlation between different trees. The 
steps involved in constructing a Random Forest model are as follows： 
Step 1：Randomly select M samples from the original dataset of size N using 
bootstrapping, allowing for the possibility of selecting the same sample multiple times. 
Step 2：Construct a regression tree using the selected M samples. This involves 
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recursively partitioning the data based on different predictor variables to create a tree 
structure. 
Step 3：Repeat Steps 1 and 2 iteratively to generate a total of T regression trees. Each 
tree is built using a different bootstrap sample. 
Step 4：For a new input, obtain predictions from each individual tree in the Random 
Forest. 
Step 5：Combine the predictions of the T trees, often using majority voting (for 
classification problems) or averaging (for regression problems), to obtain the final 
prediction. 

In Random Forest, each individual regression tree is trained on a different subset 
of the data, ensuring diversity in the predictions. By combining the predictions of 
multiple trees through majority voting or averaging, Random Forest can provide more 
robust and accurate predictions compared to a single regression tree. 

 
4.3 Neural Networks 
Neural Networks consist of an “input layer” of raw predictors, one or more “hidden 
layers” that interact and nonlinearly transform the predictors, and an “output layer” that 
aggregates hidden layers into an ultimate outcome prediction. Analogous to axons in a 
biological brain, layers of the networks represent groups of “neurons” with each layer 
connected by “synapses” that transmit signals among neurons of different layers. 
Figure4 shows two illustrative examples. 

Figure 4: Neural Networks 

 
The number of units in the input layer is equal to the dimension of the predictors, 

which we set to four in this example (denoted 𝓏5, 𝓏:, 𝓏D, 𝓏E). The left panel shows the 
simplest possible network that has no hidden layers. Each of the predictor signals is 
amplified or attenuated according to a five-dimensional parameter vector, 𝜃 , that 
includes an intercept and one weight parameter per predictor. The output layer 
aggregates the weighted signals into the forecast𝜃F + ∑ 𝓏=𝜃=E

=<5 ; that is, the simplest 
neural network is a linear regression model. 
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The model incorporates more flexible predictive associations by adding hidden 
layers between the inputs and output. The right panel of Figure 4 shows an example 
with one hidden layer that contains five neurons. Each neuron draws information 
linearly from all of the input units, just as in the simple network on the left. Then, each 
neuron applies a nonlinear “activation function” 𝑓  to its aggregated signal before 
sending its output to the next layer. For example, the second neuron in the hidden layer 

transforms inputs into an output as 𝑥:
(5) = 𝑓(𝜃:,F

(F) + ∑ 𝓏G𝜃:,G
(F))E

G<5 . Lastly, the results 

from each neuron are linearly aggregated into an ultimate output forecast: 
 

𝑔(𝓏; 𝜃) = 𝜃F
(5) + ∑ 𝑥G

(5)𝜃G
(5)H

G<5 ,     (12) 

 
Thus, in this example, there are a total of 31 = (4 + 1) × 5 + 6 parameters (five 

parameters to reach each neuron and six weights to aggregate the neurons into a single 
output). We consider architectures with up to five hidden layers. Our shallowest neural 
network has a single hidden layer of 32 neurons, which we denoted NN1. Next, NN2 
has two hidden layers with 32 and 16 neurons, respectively; NN3 has three hidden 
layers with 32, 16, and 8 neurons, respectively; NN4 has four hidden layers with 32, 16, 
8, 4 neurons, respectively; and NN5 has five hidden layers with 32, 16, 8, 4, and 2 
neurons, respectively. We choose the number of neurons in each layer according to the 
geometric pyramid rule. All architectures are fully connected so each unit receives an 
input from all units in the layer below. By comparing the performance of NN1 through 
NN5, we can infer the trade-offs of network depth in the return forecasting problem.  

 

5 An Empirical Study of US Equities 
A comprehensive analysis will be conducted by dividing all stocks into seven equally 
sized groups based on momentum. This results in 63 different portfolio performance 
outcomes when combined with the nine portfolio construction methods. Additionally, 
further classification can be done based on different prediction approaches using seven 
machine learning methods. 

However, it is important to note that not all portfolio construction methods may 
have clear motivation or research significance. To ensure a focused and meaningful 
analysis, we will only present the performance of investment portfolios that are deemed 
meaningful and have sufficient justification based on the empirical analysis process. 
These portfolios will demonstrate robust absolute returns and will be further explained 
in terms of their research significance and motivation once the results are confirmed. 
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By focusing on the portfolios that show strong performance and have a clear rationale, 
we aim to provide insightful and meaningful findings that contribute to the 
understanding of investment strategies and their implications. 
5.1 Data and Handling Missing Data 

We obtain monthly individual closing price from CRSP. Our sample begins in 
January 1995 and ends in October 2022, totaling 334 months. We exclude all financial 
firms and utility firms (SIC codes between 6,000 and 6,999, and between 4,900 and 
4,999, respectively). The number of stocks per month is 4,983. We also obtain the 
Treasury-bill rate to proxy for the risk-free rate from which we calculate individual 
excess returns. 

 
Table 1: Statistics of Rank IC in different observation periods 

 
Since not all companies are on the market at the earliest point in the data used, missing 
values may arise. Information Coefficients are employed as predictive indicators, and 
adding the mean value does not significantly affect the IC value for that month. To 
address the issue of missing values and enhance the dataset's representativeness of real 
data, thus improving the accuracy of the analysis, the mean imputation method is 
utilized. This method, a type of single imputation, involves calculating the average 
using the known stock prices for the remaining months of that specific month and filling 
in the missing data. It avoids the utilization of direct deletion methods, which can result 
in substantial data loss. 

 
 

5.2 Portfolio Performance：Real IC Values 
In this section, investment portfolios will be constructed based on the real IC 

values for the current month. The momentum of the five intervals (formation periods) 
will be calculated using logarithmic returns to obtain the IC values. The maximum 
absolute IC value will be selected, and stocks will be ranked based on their momentum 
within that time interval. The stocks will then be divided into different percentiles, 
including the top and bottom 1%, 2%, and 10%. If any stocks in the list have prices 
below $1, they will be excluded, and the next eligible stocks will be included to 
maintain the desired number of stocks (50, 100, or 500) in each group. Portfolios will 
be constructed based on these company lists. Positions will be entered at the end of the 
previous month and held for a fixed period of one month, exiting at the end of that 

Observation Periods N Minimum 25% 50% 75% Maximum Mean SD
1 momth 334 -0.514 -0.118 0.008 0.128 0.421 -0.003 0.189
6 momth 329 -0.658 -0.131 -0.010 0.128 0.446 -0.007 0.196
12 momth 323 -0.604 -0.134 0.004 0.132 0.444 -0.010 0.200
36 momth 299 -0.567 -0.183 -0.034 0.099 0.515 -0.043 0.203
60 momth 275 -0.517 -0.191 -0.035 0.104 0.468 -0.046 0.205
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month. Profits and losses during this period will be calculated as the returns from 
holding the portfolios for that specific month. 

The performance of these portfolios will be observed and analyzed over a period 
of 100 months, starting from July 2014 to October 2022. Since the prices one month 
ahead cannot be known in advance, the actual composition of the portfolios at the time 
of entry cannot be obtained at the beginning of the month. The existence of these 
portfolios is based on the assumption of early knowledge of the IC values and their 
accuracy. The performance of the portfolios will be compared to the S&P 500 (Standard 
& Poor's 500), which has been tracking the average performance of the U.S. stock 
market since 1957. The S&P 500 includes 500 common stocks, representing 
approximately 80% of the total market value. It covers a wide range of sectors and is 
widely regarded as an index that closely reflects the overall market performance. The 
monthly returns of the portfolios will be compared to the returns of the S&P 500. If a 
portfolio's return exceeds that of the S&P 500, it implies two research implications: (1) 
the Information Coefficient (IC) can serve as a predictive indicator, and (2) provides 
strong motivation for early prediction of IC values and entering the market at the end 
of the previous month. 

We include some assumptions. In the construction of the investment portfolio, an 
assumption is made that equal-weighted buying and selling of each stock within the 
portfolio is considered at the end of the month. However, it is important to note that 
practical difficulties may arise in achieving equal weighting due to stock prices and 
fractional shares. Additionally, the assumption is made that the circuit breaker 
mechanism in the US stock market is ignored. This means that buying and selling 
transactions can be executed smoothly, even if there are liquidity issues with certain 
stocks. Furthermore, it is assumed that there are no constraints, such as account closure 
or zero funds, when the investment portfolio incurs losses. Even if the return rate falls 
below -100%, the calculations will still be performed. Lastly, no transaction costs are 
considered in the analysis. This assumption implies that buying and selling stocks 
within the portfolio do not incur any fees or charges typically associated with 
transactions in the real market. 

 
5.2.1 Portfolio Performance 
Table 2 presents the performance of an investment portfolio constructed using real IC 
values with an equal-weighted approach, employing a buyTsellB strategy. This strategy 
involves purchasing the top-performing stocks and selling the bottom-performing 
stocks. The performance statistics include the average monthly return, monthly standard 
deviation, and Sharpe ratio, which is calculated using the risk-free rate based on the 
yield of the US 10-year Treasury bond. The data covers the period from July 2014 to 
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October 2022, encompassing 100 months. The results demonstrate that portfolios 
constructed using the top 1% and 2% momentum stocks exhibit significantly better 
average monthly returns and Sharpe ratio compared to the S&P 500 index. This 
indicates the potential benefits of early prediction of IC values and the construction of 
momentum strategies.Table 2: Real IC Stock-level buyTsellB Performance 

 
Table 3: Real IC Stock-level buyT/buyB Performance 

 
Table 4: Real IC Stock-level sellB/sellT Performance 

 
 

Table 5: Real IC Stock-level TB.BT Performance 

 
 

A positive IC value indicates a positive relationship between the momentum factor 
and returns, while a negative IC value indicates a negative relationship. This 
characteristic is employed to examine whether the contrarian strategy yields abnormal 
returns. Table 3, Table 4, and Table 5 present the performance of the buyT/buyB, 
sellB/sellT, and TB/BT strategies, respectively. These strategies involve constructing 
portfolios using real IC values with an equal-weighted approach. In these tables, a 
momentum strategy is adopted if the real IC value for a particular month is positive, 
whereas a contrarian strategy is employed if the IC value is negative. Among these 
strategies, the buyT/buyB strategy underperforms the S&P 500 index. However, the 
sellB/sellT strategy exhibits better average monthly returns and Sharpe ratio compared 
to the S&P 500, particularly for portfolios constructed using the top 1%, 2%, and 10% 
momentum stocks. The TB/BT strategy also outperforms the S&P 500 in terms of 

buyTsellB 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

Portfolio 7.78% 9.30% 0.835 5.24% 7.51% 0.696 0.70% 4.43% 0.153
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163

buyT/buyB 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

Portfolio -0.93% 9.30% -0.101 -1.01% 8.99% -0.115 -1.08% 7.98% -0.138
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163

sellB/sellT 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

Portfolio 2.37% 10.80% 0.218 2.24% 9.33% 0.238 1.42% 6.75% 0.208
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163

TB/BT 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

Portfolio 1.45% 12.07% 0.118 1.23% 9.09% 0.133 0.34% 4.47% 0.072
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163
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average monthly returns for portfolios constructed using the top 1% and 2% momentum 
stocks. These findings support the motivation for early prediction of IC values and 
constructing both momentum and contrarian strategies based on positive and negative 
IC values. 

 
5.2.2 Summary 
Based on the analysis of the empirical results, several preliminary conclusions can be 
drawn：(1) The positive average monthly returns indicate that the investment 
portfolios constructed using IC values calculated from momentum factors have implied 
excess returns. (2) The portfolios constructed using real IC values assume perfect 
prediction of IC values at the end of the previous month. This assumption is essential 
for the previous conclusion. If it becomes possible to predict IC values accurately, and 
the investment portfolio constructed using the predicted values approaches the 
performance of the portfolio constructed using real IC values, there is a motivation to 
accurately predict IC values at the end of the previous month. 

These conclusions suggest the potential to achieve similar performance to 
portfolios constructed using real IC values by accurately predicting IC values at the end 
of the previous month. Therefore, there is a motivation to develop methods that can 
accurately forecast IC values. Based on these findings, it is recommended to explore 
and develop techniques or models that can effectively predict IC values, as this has the 
potential to enhance investment portfolio performance. 

 
5.3 Portfolio Performance：Predictive IC Values 
In continuation of section 5.2.2, this section aims to explore the prediction of IC values 
using three machine learning methods: linear regression, random forest, and neural 
networks (specifically, NN1, NN2, NN3, NN4, and NN5). The objective is to categorize 
companies into top-performing and bottom-performing stocks based on the momentum 
factor, with the goal of generating investment portfolios that can potentially achieve 
abnormal returns in advance. 

The accuracy of the machine learning models will be examined initially, and 
investment portfolios will be constructed using the models with high accuracy. Similar 
to the previous approach, the portfolios will be entered into the market at the end of the 
previous month, and their performance will be observed over a one-month holding 
period. A comparison will be made against the S&P 500 index to determine whether it 
is possible to obtain IC values earlier through the predictive power of machine learning. 
Additionally, different strategies will be examined to evaluate the implications of the 
momentum factor in generating implicit excess returns. By conducting this analysis, we 
aim to assess the viability of using machine learning techniques to predict IC values 
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and determine their potential in improving investment strategies. The findings will 
contribute to the understanding of early prediction of IC values and the development of 
effective entry strategies for investment portfolios. 

 
5.3.1 Machine Learning Model Setup 
In this section, we outline the setup of the machine learning models used in the paper. 
The input variables for the models are the Ranked Momentum features, while the output 
variable is the IC value, which serves as the target data. Since there are five observation 
periods for momentum factors, each machine learning model will be trained five times 
using the corresponding IC values. 

We divide the 334 months of data into training sample, validation sample, and the 
remaining 1 month for out-of-sample testing. The training sample consists of input 
variables from 1 to t-101 and output variables from 2 to t-100. The validation sample 
consists of input variables from t-101 to t-2 and output variables from t-100 to t-1. The 
length of the validation set is fixed at 100 months. The testing sample includes input 
variables at time point t-1. The predicted IC value, obtained from the model, 
corresponds to the output variable at time point t. Because machine learning algorithms 
are computationally intensive, we avoid recursively refitting models each month. 
Instead, we refit once every year as most of our signals are updated once per year. Each 
time we refit, we increase the training sample by one year.  

We perform 100 predictions by rolling the time back 100 months. The interval 
between predictions is one month. It is important to note that the calculated win rate, 
average excess monthly return, cumulative return, and annualized return do not 
consider transaction costs, fees, and additional costs associated with shorting. By 
following this model setup, we aim to evaluate the performance of the machine learning 
models in predicting IC values and constructing investment portfolios. 

 
5.3.2 Comparison of Machine Learning Model Predictions 
We utilize the elements of the Confusion Matrix to calculate four evaluation metrics: 
Accuracy, Precision, Recall, and F1-Score. The elements of the Confusion Matrix are 
presented in Table 6 as follows: 

Table 6: Confusion Matrix 

 
In the Confusion Matrix, the investment portfolios with positive returns are 

classified as “Positive,” and those with negative returns are classified as “Negative.” 

Positive Negative
Positive TP FP
Negative FN TN

TRUEConfusion Matrix

Predict
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“Predicted” represents the investment portfolios constructed based on predicted IC 
values, while “True” represents the investment portfolios constructed based on true IC 
values. The four elements of the Confusion Matrix are as follows: 
� True Positive (TP): Predicted as positive and true value is positive. 
� True Negative (TN): Predicted as negative and true value is negative. 
� False Positive (FP): Predicted as positive but true value is negative. 
� False Negative (FN): Predicted as negative but true value is positive. 
These four elements can be used to calculate the four-evaluation metrics: Accuracy, 

Precision, Recall, and F1-Score. 

												Accuracy	 = IJ	"	IL
IJ	"	MJ	"	ML	"	IL

,       (13) 

where Accuracy represents the consistency of the predicted returns with the true returns 
in terms of their positive or negative direction among all outcomes. 

																					Precision	 = 	 IJ
IJ	"	MJ

,      (14) 

where Precision is a metric that measures the proportion of accurately predicted positive 
returns out of all instances that were predicted as positive. 

		Recall	 = IJ	
IJ	"	ML

,               (15) 

where Recall is a metric that measures the proportion of correctly identified positive 
returns out of all instances that were positive. 

                              		F1	 − 	score = :
(

	-./012134"
(

5/0677
,            (16) 

where F1-score is a metric that combines both precision and recall providing a balanced 
measure of the two in predicting positive returns. It considers both false positives (FP) 
and false negatives (FN) and is calculated as the harmonic mean of precision and recall. 
The F1-score ranges from 0 to 1, with a higher value indicating a better balance between 
precision and recall and a more accurate and reliable prediction model. 

The statistics in Table 7, Table 8, and Table 9 demonstrate the consistency between 
predicted and actual returns for the buyTsellB strategy at the 1%, 2%, and 10% levels, 
based on the predictions of various machine learning models over 100 prediction runs. 
There is a higher probability of correct directional predictions, indicating the 
effectiveness of the models in capturing the momentum factors. Furthermore, it is 
observed that the accuracy tends to increase as the number of stocks included in the 
portfolio decreases. This suggests that constructing portfolios with a smaller number of 
stocks can potentially yield higher accuracy. In terms of average monthly returns shown 
in Table 7, Table 8, and Table 9, positive returns are achieved by constructing the 
buyTsellB strategy based on the predicted IC values. This highlights the explanatory 
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power of using momentum factors to construct momentum strategies. Additionally, 
portfolios with a smaller number of stocks tend to generate higher returns. It is 
important to note that there is no significant difference in accuracy among the seven 
machine learning models used in the paper. This indicates that the choice of the specific 
machine learning algorithm does not greatly impact the accuracy of the predictions for 
the buyTsellB strategy. 

 
Table 7: Statistics for the buyTsellB Strategy at 1% Level 

 

 

Table 8: Statistics for the buyTsellB Strategy at 2% Level 

 

 

Table 9: Statistics for the buyTsellB Strategy at 10% Level 

 

 

The statistics in Table10, Table11 and Table12 reflect the accuracy of the TB/BT 
strategy at the 1%, 2%, and 10% levels based on predictions from various machine 
learning models, based on the predictions of various machine learning models over 100 
prediction runs. It is observed that the accuracy of all four-evaluation metrics 
significantly decreases compared to the buyTsellB strategy. This suggests that 
incorporating the contrarian strategy using predicted IC values leads to lower accuracy 
in general. Additionally, there is no significant difference in accuracy among the seven 

1% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 90.0% 90.0% 89.0% 87.0% 88.0% 87.0% 82.0%
Precision 93.0% 89.4% 91.0% 89.0% 90.9% 90.8% 88.4%
Recall 95.2% 100.0% 96.4% 96.4% 95.2% 94.0% 90.5%
F1-Score 94.1% 94.4% 93.6% 92.6% 93.0% 92.4% 89.4%

1% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return 9.008% 9.760% 9.505% 9.793% 9.170% 8.638% 9.339%

2% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 83.0% 87.0% 84.0% 84.0% 82.0% 84.0% 82.0%
Precision 89.0% 87.8% 86.5% 86.5% 87.1% 89.2% 87.1%
Recall 90.1% 97.5% 95.1% 95.1% 91.4% 91.4% 91.4%
F1-Score 89.6% 92.4% 90.6% 90.6% 89.2% 90.2% 89.2%

2% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return 5.703% 6.258% 5.989% 6.624% 5.641% 5.204% 5.926%

10% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 84.0% 88.0% 86.0% 84.0% 85.0% 83.0% 73.0%
Precision 88.7% 88.1% 87.7% 86.0% 90.4% 90.0% 75.0%
Recall 82.5% 91.2% 87.7% 86.0% 82.5% 78.9% 78.9%
F1-Score 85.5% 89.7% 87.7% 86.0% 86.2% 84.1% 76.9%

10% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return 0.539% 0.880% 0.954% 0.837% 0.552% 0.397% 1.007%
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machine learning models used in the paper, indicating that the choice of specific 
machine learning algorithms does not greatly impact the accuracy of predictions for the 
TB/BT strategy. Furthermore, the average monthly returns presented in Table10, 
Table11, and Tabl12 indicate that almost all average monthly returns are negative for 
the TB/BT strategy at the 1%, 2%, and 10% levels. This suggests that constructing the 
TB/BT strategy based on predicted IC values does not improve overall returns and may 
not be effective in generating positive returns. Incorporating the contrarian strategy 
using predicted IC values does not appear to yield favorable outcomes in terms of 
average monthly returns. These findings highlight the limitations and challenges 
associated with incorporating the contrarian strategy based on predicted IC values and 
emphasize the need for further research and exploration to improve the performance of 
such strategies. 

 
Table 10: Accuracy Statistics for the TB/BT Strategy at 1% Level 

 

 
 

Table 11: Accuracy Statistics for the TB/BT Strategy at 2% Level 

 

 
 

Table 12: Accuracy Statistics for the TB/BT Strategy at 10% Level 

 

 
 

 

1% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 65.0% 51.0% 48.0% 58.0% 50.0% 54.0% 51.0%
Precision 70.7% 71.4% 50.0% 60.4% 53.1% 56.5% 53.2%
Recall 55.8% 9.6% 42.3% 55.8% 32.7% 50.0% 48.1%
F1-Score 62.4% 16.9% 45.8% 58.0% 40.5% 53.1% 50.5%

1% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return -0.881% -9.723% -0.212% -0.874% -3.877% -0.787% -2.099%

2% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 60.0% 52.0% 46.0% 53.0% 48.0% 55.0% 55.0%
Precision 60.5% 54.5% 43.9% 52.3% 45.2% 54.8% 54.5%
Recall 53.1% 12.2% 36.7% 46.9% 28.6% 46.9% 49.0%
F1-Score 56.5% 20.0% 40.0% 49.5% 35.0% 50.5% 51.6%

2% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return -0.574% -6.226% -0.230% -0.861% -2.386% -0.557% -1.003%

10% OLS RF NN1 NN2 NN3 NN4 NN5
Accuracy 63.0% 55.0% 49.0% 51.0% 55.0% 56.0% 50.0%
Precision 59.3% 52.5% 46.0% 48.1% 52.0% 53.1% 47.2%
Recall 68.1% 44.7% 48.9% 55.3% 55.3% 55.3% 53.2%
F1-Score 63.4% 48.3% 47.4% 51.5% 53.6% 54.2% 50.0%

10% OLS RF NN1 NN2 NN3 NN4 NN5
Average
Return 0.299% -0.900% -0.046% -0.009% -0.191% -0.020% 0.372%
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5.3.3 Portfolio Performance 
In Table13, the returns and win rates of 9 investment portfolios are compared, with each 
portfolio constructed based on the top and bottom 1% momentum stocks. The portfolios 
buyT/sellB, buyT, sellB, and buyTsellB consistently achieve win rates exceeding 50% 
across different machine learning models, indicating their effectiveness in constructing 
momentum strategies using predicted IC values. On the other hand, portfolios TB/BT, 
buyT/buyB, sellB/sellT, buyB, and sellT exhibit win rates below 50%, suggesting 
limited effectiveness when operations are based on positive and negative IC values or 
when implementing contrarian strategies. Table13 shows the average excess monthly 
returns of the 100 constructed portfolios over the period from July 2014 to October 
2022. The buyTsellB strategy stands out with the highest average excess monthly return, 
indicating its significant abnormal returns compared to the S&P 500. These results in 
Table13 and Table14 complement each other, highlighting the consistent profitability 
of momentum strategies constructed using predicted IC values in the US stock market. 

Overall, the findings emphasize the effectiveness of constructing momentum 
strategies based on predicted IC values, as demonstrated by the consistently positive 
returns and win rates of portfolios such as buyT/sellB, buyT, sellB, and buyTsellB. 
However, strategies involving contrarian operations or solely buying bottom-
performing or selling top-performing stocks exhibit limited effectiveness in generating 
abnormal returns. 

 
Table 13: Comparison Win Rates for 9 Investment Portfolios at 1% Level 

 

OLS RF NN1 NN2 NN3 NN4 NN5
TB/BT 38% 7% 39% 48% 31% 37% 36%

buyT/buyB 31% 16% 40% 33% 28% 34% 34%
buyT/sellB 56% 69% 72% 71% 66% 59% 64%
sellB/sellT 50% 25% 51% 46% 46% 48% 48%
buyT 55% 58% 55% 56% 52% 52% 55%
buyB 18% 16% 19% 18% 17% 19% 19%
sellT 35% 25% 34% 33% 35% 35% 29%
sellB 67% 70% 73% 71% 73% 69% 75%

buyTsellB 77% 86% 82% 87% 80% 79% 80%
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Table 14: Average Excess Monthly Returns at 1% Level 

 

 
Next, we will examine the four portfolios (buyT/sellB, buyT, sellB, and buyTsellB) that 
have significant positive returns. 
1. buyT/sellB 
Table15 presents the performance of the buyT/sellB strategy constructed using machine 
learning models for the top and bottom 1%, 2%, and 10% portfolios. Across all machine 
learning models, the buyT/sellB strategy outperforms both the S&P 500 and the 
buyT/sellB strategy constructed using real IC values for the 1% and 2% portfolios. This 
suggests that incorporating predicted IC values from the machine learning models leads 

OLS RF NN1 NN2 NN3 NN4 NN5
TB/BT -1.32% -6.97% -0.98% -1.61% -3.13% -1.31% -1.75%

buyT/buyB -2.57% -4.78% -2.43% -2.21% -3.66% -2.68% -2.94%
buyT/sellB 0.84% 3.23% 2.66% 3.89% 3.08% 1.65% 2.10%
sellB/sellT 0.49% -2.94% 0.70% -0.15% -0.23% 0.62% 0.44%
buyT 0.57% 1.46% 0.68% 1.53% 0.36% 0.20% 0.52%
buyB -5.13% -4.80% -5.31% -5.09% -5.28% -5.00% -5.40%
sellT -2.07% -2.96% -2.18% -3.03% -1.85% -1.70% -2.02%
sellB 3.63% 3.30% 3.81% 3.59% 3.79% 3.50% 3.91%

buyTsellB 4.95% 5.51% 5.24% 5.88% 4.89% 4.46% 5.18%
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to improved performance. Furthermore, the portfolios with a smaller number of stocks 
exhibit higher excess returns. This implies that constructing portfolios with a 
concentrated selection of top-performing and bottom-performing stocks can potentially 
enhance returns. Among the machine learning models, the buyT/sellB strategy 
constructed using the NN2 model yields the most significant positive returns, indicating 
the effectiveness of this particular model for predicting IC values and generating excess 
returns. The buyT/sellB strategy operates based on the predicted IC values, where a 
positive IC value triggers a buyT operation, and a negative IC value triggers a sellB 
operation. By incorporating the observed positive and negative IC values from the 
machine learning models into the buyT/sellB strategy, significant absolute returns can 
be achieved. These results demonstrate the value of utilizing machine learning models 
for predicting IC values and constructing investment strategies that outperform the 
benchmark. The findings suggest that accurately predicting IC values can provide an 
advantage in achieving positive returns and improving the overall performance of 
investment portfolios. 

Table 15: Performance of buyT/sellB Strategy Using Machine Learning Models  

 
Figure 5: Cumulative Returns of buyT/sellB at 1% Level 

 

buyT/sellB 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

OLS 3.45% 10.00% 0.343 1.59% 9.08% 0.173 -0.96% 7.92% -0.123
RF 5.46% 7.20% 0.756 3.98% 6.70% 0.591 1.27% 5.97% 0.209

NN1 5.11% 8.93% 0.570 3.41% 8.82% 0.385 0.60% 7.62% 0.076
NN2 6.37% 9.51% 0.668 4.63% 8.96% 0.515 1.54% 7.99% 0.191
NN3 5.25% 9.57% 0.546 3.83% 8.98% 0.425 0.92% 7.26% 0.124
NN4 3.97% 9.76% 0.405 2.39% 9.11% 0.261 -0.08% 8.31% -0.012
NN5 4.70% 9.33% 0.502 2.84% 8.54% 0.331 0.59% 7.31% 0.079

real IC 2.83% 8.91% 0.315 1.48% 8.92% 0.164 -0.86% 8.00% -0.110
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163
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2. buyT 
Table16 presents the performance of the buyT strategy constructed using machine 

learning models for the top 1%, 2%, and 10% portfolios. Across all machine learning 
models, the buyT strategy outperforms both the S&P 500 and the buyT strategy 
constructed using real IC values for the 1% and 2% portfolios. This suggests that 
incorporating predicted IC values from the machine learning models leads to improved 
performance. Furthermore, portfolios with a smaller number of stocks exhibit higher 
excess returns, indicating the potential benefits of constructing concentrated portfolios 
of top-performing stocks. Among the machine learning models, the buyT strategy 
constructed using the Random Forest model yields more significant positive returns, 
suggesting its effectiveness in predicting IC values and generating excess returns. 

 
Table 16: Performance of buyT Strategy Using Machine Learning Models 

 
 

Figure6: Cumulative Returns of buyT and buyB Strategies at 1% Level 

 
Figure6 illustrates the cumulative returns of the buyT and buyB strategies. It is 

evident that constructing momentum strategies based on predicted IC values obtained 

buyT 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

OLS 2.86% 10.22% 0.278 1.32% 9.83% 0.133 -0.97% 8.38% -0.118
RF 4.21% 9.92% 0.423 2.21% 9.56% 0.229 -0.45% 8.39% -0.056

NN1 3.31% 10.02% 0.329 1.43% 9.78% 0.144 -0.65% 8.41% -0.079
NN2 4.00% 10.05% 0.397 2.28% 9.67% 0.234 -0.63% 8.47% -0.076
NN3 2.94% 10.10% 0.290 1.11% 9.53% 0.114 -0.95% 8.20% -0.117
NN4 2.54% 10.73% 0.235 0.95% 10.06% 0.093 -0.95% 8.51% -0.114
NN5 3.23% 9.90% 0.325 1.27% 9.65% 0.130 -0.84% 8.04% -0.106

real IC 2.24% 10.42% 0.214 1.00% 9.99% 0.098 -0.91% 8.38% -0.110
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163
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from machine learning models can generate absolute returns. The buyT strategy 
consistently outperforms the buyB strategy, indicating the effectiveness of the 
momentum strategy in capturing positive returns. However, it is noted that constructing 
contrarian strategies based on IC values, as represented by the buyB strategy, does not 
result in positive returns. This highlights the challenge and limitations associated with 
implementing contrarian strategies based on predicted IC values. Overall, the findings 
emphasize the effectiveness of constructing momentum strategies based on predicted 
IC values, as demonstrated by the positive excess returns of the buyT strategy. The 
performance of machine learning models plays a crucial role in accurately predicting 
IC values and generating profitable investment strategies. 

 
3. sellB 

Table 17 presents the performance of the sellB strategy constructed using machine 
learning models for the top 1%, 2%, and 10% portfolios. Across all machine learning 
models, the sellB strategy outperforms both the S&P 500 and the sellB strategy 
constructed using real IC values for the 1%, 2%, and 10% portfolios. This suggests that 
incorporating predicted IC values from the machine learning models leads to improved 
performance. Moreover, portfolios with a smaller number of stocks exhibit higher 
excess returns, indicating the potential benefits of constructing concentrated portfolios 
of bottom-performing stocks. Among the machine learning models, the sellB strategy 
constructed using the NN3 model generates slightly more significant positive returns, 
suggesting its effectiveness in predicting IC values and generating excess returns. 

 
Table 17: Performance of sellB Strategy Using Machine Learning Models 

 
 
 
 
 
 
 

sellB 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

OLS 6.15% 8.63% 0.711 4.38% 7.73% 0.564 1.51% 6.69% 0.223
RF 5.55% 7.15% 0.775 4.05% 6.66% 0.605 1.33% 5.95% 0.221

NN1 6.19% 7.82% 0.790 4.56% 7.37% 0.616 1.61% 6.47% 0.245
NN2 5.79% 7.61% 0.758 4.34% 6.99% 0.618 1.46% 6.15% 0.235
NN3 6.23% 8.20% 0.757 4.53% 7.54% 0.599 1.50% 6.44% 0.230
NN4 6.10% 7.79% 0.780 4.25% 7.13% 0.594 1.35% 6.70% 0.199
NN5 6.10% 7.54% 0.807 4.66% 7.33% 0.633 1.84% 6.44% 0.283

real IC 4.96% 8.80% 0.562 3.51% 7.94% 0.440 1.01% 6.47% 0.154
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163



 -28- 

Figure 7: Cumulative Returns of sellB and sellT Strategies at 1% Level 

 
 

Figure 7 illustrates the cumulative returns of the sellB and sellT strategies. It is 
evident that constructing momentum strategies based on predicted IC values obtained 
from machine learning models can generate absolute returns. The sellB strategy 
consistently outperforms the sellT strategy, indicating the effectiveness of the 
momentum strategy in capturing positive returns. However, it is noted that constructing 
contrarian strategies based on IC values, as represented by the sellT strategy, does not 
result in positive returns. Overall, the findings emphasize the effectiveness of 
constructing momentum strategies based on predicted IC values, as demonstrated by 
the positive returns of the sellB strategy.  

 
4. buyTsellB 

Both implementing the buyT and sellB strategies individually can generate excess 
returns. We examine the performance when both strategies are implemented 
simultaneously. Table 18 presents the performance of the buyTsellB strategy 
constructed using machine learning models for the top 1%, 2%, and 10% portfolios. 
Across all machine learning models, the buyTsellB strategy outperforms both the S&P 
500 and the buyTsellB strategy constructed using real IC values for the 1%, 2%, and 
10% portfolios. This suggests that implementing the buyTsellB strategy based on 
observed IC values from machine learning models leads to improved performance 
compared to implementing buyT and sellB strategies separately. Among the machine 
learning models, the buyTsellB strategy constructed using the NN2 model generates 
slightly more significant positive returns, highlighting the effectiveness of this model 
in predicting IC values and generating excess returns. These findings indicate that 
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implementing the buyTsellB strategy based on the observed IC values from machine 
learning models can generate absolute returns, and the returns are notably superior to 
implementing buyT and sellB strategies separately. This highlights the potential 
benefits of combining two momentum strategies in a single approach, leveraging the 
predictive power of machine learning models to enhance portfolio performance. 

 
Table18: Performance of buyTsellB Strategy Using Machine Learning Models 

 
 

Figure 8: Cumulative Returns of buyTsellB Strategies at 1% Level 

 
 

5.3.4 Summary 

Based on the empirical results discussed above, the result confirms that 
constructing investment portfolios using machine learning models can generate 
significant positive returns. The buyT/sellB, buyT, sellB, and buyTsellB portfolios 
demonstrate strong performance under different machine learning models, with each 
portfolio achieving the most significant returns in specific scenarios. The buyT/sellB 
and buyT strategies exhibit notable returns when the portfolio includes stocks in the top 

buyTsellB 1% 2% 10%
Average
 return

Standard
 deviation

Sharpe
 ratio

Average
 return

Standard
deviation

Sharpe
 ratio

Average
return

Standard
deviation

Sharpe
ratio

OLS 9.01% 9.52% 0.944 5.70% 7.11% 0.800 0.54% 3.98% 0.131
RF 9.76% 8.23% 1.184 6.26% 6.60% 0.946 0.88% 4.30% 0.201

NN1 9.50% 8.55% 1.110 5.99% 6.82% 0.875 0.95% 4.17% 0.225
NN2 9.79% 9.23% 1.059 6.62% 7.19% 0.918 0.84% 4.44% 0.185
NN3 9.17% 9.44% 0.969 5.64% 7.06% 0.796 0.55% 4.01% 0.134
NN4 8.64% 8.19% 1.053 5.20% 6.36% 0.815 0.40% 3.81% 0.100
NN5 9.34% 7.78% 1.199 5.93% 6.32% 0.935 1.01% 4.30% 0.230

real IC 7.78% 9.30% 0.835 5.24% 7.51% 0.696 0.70% 4.43% 0.153
S&P500 0.75% 4.49% 0.163 0.75% 4.49% 0.163 0.75% 4.49% 0.163
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and bottom 2% of all stocks, respectively. On the other hand, the sellB and buyTsellB 
strategies show significant returns when the portfolio contains stocks in the top and 
bottom 10% of all stocks. This suggests that momentum strategies can be effective, 
depending on the specific portfolio composition. Furthermore, the empirical results 
indicate that portfolios with a smaller number of stocks tend to generate better returns. 
This emphasizes the potential benefits of constructing concentrated portfolios, focusing 
on a select group of top-performing or bottom-performing stocks.  

In contrast to the observation that the contrarian strategy using real IC values can 
yield abnormal returns, the result finds that the contrarian strategy implemented using 
machine learning models does not generate positive returns. This suggests that the 
predictive power of the machine learning models may not be strong enough to capture 
profitable opportunities with the contrarian approach. Moreover, the results indicate 
that the sellB strategy outperforms the buyT strategy in terms of returns, suggesting that 
shorting stocks with weak momentum yields more significant abnormal returns 
compared to longing stocks with strong momentum. The most significant returns are 
achieved when both shorting stocks with weak momentum and longing stocks with 
strong momentum are implemented simultaneously, as demonstrated by the buyTsellB 
strategy. Overall, the paper examines nine investment portfolios, and among them, four 
portfolios constructed using machine learning models consistently outperform the S&P 
500 and the portfolios constructed using real IC values. This confirms the conclusion 
that constructing investment portfolios based on predicted IC values obtained from 
machine learning models can generate absolute positive returns. The findings highlight 
the potential of leveraging machine learning techniques for improved portfolio 
performance and the importance of considering both momentum and contrarian 
strategies in the investment decision-making process. 

 
5.4 Comparison of Momentum Factors’ Importance 
To evaluate the impact of different momentum factors on the performance of various 
machine learning models, as described in Section 3.2, we selected the momentum factor 
with the highest absolute value of predicted IC values for five observation periods per 
month. We then calculated the frequency of usage for each momentum factor in 100 
predictions. A higher frequency indicates a relatively greater importance of the 
momentum factor for the corresponding machine learning model.  
Figure 9: Ranking of Momentum Factors’ Importance for Machine Learning Models 
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Figure 9 presents the ranking of the importance of various momentum factors for 
different machine learning models, based on different observation periods. The vertical 
axis represents the momentum factors, with the factor that has the highest frequency of 
usage positioned at the top of the graph, and the factor with the lowest frequency at the 
bottom. The color gradient within each column indicates the ranking of the importance 
of a specific momentum factor for the corresponding machine learning model. The 
colors range from the least important (lightest color) to the most important (darkest 
color). From Figure 9, we can observe that the rankings of all six machine learning 
models, except for the linear regression model, are highly consistent. This consistency 
suggests a relative importance of different momentum factors that remains consistent 
across various machine learning models and different observation periods. The results 
indicate that longer observation periods of momentum factors show a stronger 
correlation with returns. Using longer observation periods to predict IC values for 
constructing investment portfolios leads to more significant results. This highlights the 
importance of considering longer-term momentum factors when predicting future 
performance and constructing effective investment strategies. This finding emphasizes 
the consistent and influential role of various momentum factors in the performance of 
different machine learning models. The results suggest that longer observation periods 
of momentum factors are more closely linked to returns. This underscores the 
significance of incorporating these factors into the prediction process for constructing 
successful investment portfolios. 
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6 Conclusion 
We investigate the predictive ability of several machine learning models for 
constructing investment portfolios and analyze their performance using different 
variables and portfolio compositions. At a high level, our research findings indicate that 
the implemented process can significantly enhance excess returns. Machine learning 
helps improve momentum strategies by capturing strong correlations between stocks 
and their returns using information coefficients (IC). Shallow machine learning enables 
us to trace the sources of advantage and adapt to non-linear correlations that traditional 
methods might overlook. We confirm that a unidirectional momentum strategy can 
yield significant returns. Furthermore, we observe that implementing a bidirectional 
approach leads to even more pronounced gains. We find that shorting weak stocks 
outperforms longing strong stocks, indicating the persistence of the "winners keep 
winning, losers keep losing" phenomenon. Additionally, we observe that price reversals 
do not occur within a month. Optimizing the number of stocks in the portfolio leads to 
the highest excess returns within a certain threshold range. However, implementing 
inverse trades using machine learning models does not yield positive returns, indicating 
that the predictive ability of the models may be inadequate to identify profitable 
opportunities in these situations. Finally, we discover that momentum factors with 
longer holding periods are more powerful predictors, accurately capturing the 
correlation between stocks and their returns. We assume that momentum factors with 
shorter observation periods are less effective, possibly due to the effect of mean 
reversion. Our research underscores the importance of accurately predicting IC values 
and the effectiveness of momentum strategies in generating positive returns. Machine 
learning models can effectively apply momentum strategies, addressing challenges 
related to real-time responsiveness and stability. This empowers investors to enhance 
their decision-making and improve portfolio performance. 
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